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Abstract 

This paper presents initial results in a study com- 
paring the eflectiveness of visible and infra-red ( IR)  im- 
agery for  detecting and recognizing faces in areas where 
personnel identification i s  critical, (e.g., airports and 
secure buildings). W e  compare the effectiveness of vis- 
ible versus IR imagery by running three face recognition 
algorithms on a database of images collected for  this 
study. There are both I R  and visible images for  each 
person in the database collected using the same sce- 
narios. W e  used three very different feature-extraction 
and decision-making algorithms for  our study to  insure 
that the comparisons would not depend on a particu- 
lar processing technique. W e  also present recognition 
results when visible and infra-red decision metrics are 
fused. The recognition results show that both visible 
and IR imagery perform similarly across algorithms 
and that fusion of IR and visible imagery is a viable 
means of enhancing performance beyond that of either 
acting alone. W e  examine the relative importance of 
different regions of the face for  recognition. W e  also 
discuss practical issues of implementation, along with 
plans for  the next phase of the study, face detection in 
an uncontrolled environment. Preliminary face detec- 
tion results are presented. 

1 Introduction 

Security concerns have stimulated a great deal of in- 
terest in automatic face detection and face recognition. 
One such concern involves the necessity for spotting 
people in public places, comparing their face images 
with a database of mug shots and presenting human 
decision makers with a likely set of possible matches. 
Another concern is ensuring and/or denying access to 
secure areas or computers. In this case, face verifica- 
tion can be used to corroborate other biometric (e.g., 

voice print, finger print, retinal scan) or documentary 
identifying information. Until recently, almost all re- 
search connected with this technology has dealt with 
imagery in the visible spectrum [l, 21. However, in 
most practical implementations of the technology, per- 
formance is sensitive to variations in illumination and 
interactions between changes in pose and illumination. 
Consequently, infra-red (IR) imagery in the 8-12 mi- 
cron wavelength region has been suggested as an alter- 
native source of information for detection and recogni- 
tion of faces. However, we are not aware of any studies 
that support or contradict this claim in the academic 
literature and to our best knowledge this is the first 
paper to address the issue. Since sensors in this wave 
band respond to the thermal radiation emitted by the 
face, it is impervious to variations in illumination. It 
is, however, subject to variations in temperature in the 
surrounding environment, and to variations in the heat 
patterns of the face when an individual moves from one 
temperature environment to another. 

This paper reports on initial efforts in determining 
whether IR imagery represents a viable alternative to 
visible in the search for a robust, practical identifica- 
tion system. The results reported here deal only with 
the recognition aspects of the problem; we will deal 
with detection of faces in a complex background in 
the next phase of our project. An important part of 
the evaluation is the extraction of image data in a re- 
alistic setting (i.e., one that approximates the actual 
conditions in a public space where people are walk- 
ing and talking). Section 2 outlines the experimen- 
tal conditions under which we collected a database 
of visible and infra-red images. Section 3 describes 
the pre-processing, feature-extraction and recognition 
techniques that we employed in the visible/IR compar- 
ison. We used three very different feature-extraction 
and recognition algorithms to render the comparison 
independent of a particular processing technique. (We 
should emphasized that the three techniques were not, 
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necessarily, implemented optimally, and that no con- 
clusions as to their relative merits should be drawn.) 
We present recognition results using the three tech- 
niques in section 4, along with results for fusion of visi- 
ble and IR imagery. Section 5 interprets these results in 
the light of the unexpected good performance obtained 
on the IR database. We also discuss practical consider- 
ations in implementing both visible and IR recognition 
systems along with our next steps in the detection of 
faces in complex backgrounds. Preliminary results on 
face detection are presented. 

2 Experimental Conditions 

The goals of the experiment were to collect compa- 
rable visible and IR image pairs, and to compute recog- 
nition results for various combinations of "train on one 
and test on the other" in a manner somewhat similar to 
experiments on the FERET database [Z]. However, un- 
like the FERET experiments, where the subjects were 
always seated in a stable illumination environment, our 
subjects walked towards a camera while we captured a 
sequence of images. We captured eight sequences for 
each subject, four visible and four IR. A set of four in- 
cluded two images directly towards the camera and two 
at +/-22.5'. The subject was talking during one of the 
two direct sequences (saying "how are youn to guar- 
antee significant mouth movement). The subject was 
silent during the other three sequences. The images 
used in the experiments reported here were extracted 
from the silent and talking direct paths. Each sequence 
consisted of 12 images captured while the subject was 
walking a distance of approximately 1 meter toward the 
camera. For the purposes of the experiments reported 
here, the fifth and eleventh image of each sequence were 
selected to ensure that the subject's mouth would be in 
motion during the talking sequence. Visible and cam- 
eras were positioned side-by-side at  a distance of ap- 
proximately 3.5 meters from the center of the 1-meter 
walking range, and angled very slightly to converge in 
the middle of that range. 

The illumination for the visible camera consisted of 
an overhead ceiling fluorescent fixture, combined with 
diffuse, indirect lighting at about waist level directed 
from either side of a panel below the cameras. We 
erected uniform white backdrop approximately 2 me- 
ters behind the waiking range. 

The temperature of the room was allowed to range 
over the several degrees of a normally air-conditioned 
laboratory during the course of a day. Consequently, all 
subjects were not scanned at  precisely the same tem- 
perature. Furthermore, due to the difficulty in getting 
all of our subjects to return for a second scanning, all 

sequences from each subject were acquired during one 
visit to the laboratory. 

The visible camera was a CIDTEC 2250 CID cam- 
era, and the infra-red camera was an uncooled sensor 
on temporary loan from DARPA and the US Army 
Night Vision & Electronic Sensors Directorate. The IR 
camera is a Texas Instruments SMRTII, which supplies 
a standard RS170 video output signal readily digitized 
by our Datacube MV2OOISun Sparc5 imaging system. 
The lens and aperture stop of the visible camera were 
selected to match the magnification, center of focus 
and depth of field of the lens system of the IR camera, 
which was not selectable. The match that was achieved 
was quite close. We stored the raw images from both 
cameras as 512(H)x450(V) pixel images. 

The database includes image sequences from 101 
subjects without glasses (we deal with the issue of 
glasses in the Discussion section). We conducted four 
recognition experiments on this database. They were: 

0 train on visible silent image #5, test on visible 

0 train on visible talking image #5, test on visible 

0 train on IR silent image #5, test on IR talking 

train on IR talking image #5, test on IR silent 

Examples of images from the database are shown in 
figure 1. 

The preparation of these images for feature extrac- 
tion and recognition is described in the following sec- 
tion. 

talking image #11 -(VS5>VT11) 

silent image #11 -(VT5>VS11) 

image #11 -(IRS5>1RT11) 

image #11 -(IRTS>IRSll) 

3 Pre-processing, Feature Extraction 
and Recognition Algorithms 

Since we were concerned with recognition in this 
phase of the investigation, we located faces manually by 
clicking with a mouse on four points on each face: the 
center of each eye, the tip of the nose and the center of 
the mouth. We then smoothed the images with a gaus- 
sian filter (s.d. = 3 pixels) to remove artifacts of the 
scanning process, and rotated and scaled the images 
so that the eyes of all subjects were in fixed columns 
of the same row. We then cropped the images and 
masked them to the individual requirements of three 
feature extraction and recognition algorithms. We de- 
scribe these algorithms in the following paragraphs. 

3.1 Transform Coding of Grey Scale Projections 

Grey scale projections, (that is grey scale sums along 
one or more directions through a face image) converts a 
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(a) visible,silent (b) visible,talking 

(a) IR,silent (b) IR,talking 

Figure 1. Examples of Visible and IR face im- 
ages. 

two-dimensional image to one or more one-dimensional 
signatures. Unlike tomographic applications, where 
image reconstruction is the goal, a small number of 
projections can provide sufficient information for clas- 
sification [3], [4]. Grey scale projections are readily 
extracted with low-cost, high-speed video hardware. 
In this instance, four projections are used: horizon- 
tal, vertical and +/-45". The horizontal projections, 
which carry the most useful information for recogni- 
tion, are also relatively insensitive to rotations of the 
head about the vertical axis [4]. We obtained the pro- 
jections. after masking with a truncated ellipse, as 
shown in figure 2. We carried out transform coding 
of these four projections to provide greater data reduc- 
tion; to decorrelate samples from the input waveforms; 
and, as a practical matter, to distribute local distor- 
tions due to changes in expression across all output 
features. We used the Discrete Cosine Transform; the 
feature vectors were comprised of 18 low-pass compo- 
nents, excluding the first two (i.e. the DC and next 
higher component were excluded to provide immunity 
to absolute light level and gradual shading). Recogni- 
tion was based on a weighted sum of the distance met- 
rics Mh, M u ,  M+45, M-45 for each projection. The met- 
ric, M 3 ,  is given by Maz(Ma) = M a z ( 1  - Di/Dmas) ,  
where Di is the Ll-norm distance between the test vec- 

Figure 2. Face image masked with truncated 
ellipse. 

tor and the ith training vector, and D,,, is the L1- 
norm distance between the test vector and the most 
distant training vector. In the results reported here, 

These results are consistent with a number of ex- 
periments that show horizontal projections providing 
the greatest discrimination and vertical projections (at 
least on the full face) providing the least discrimina- 
tion. 

M = 0.375Mh + 0.125Mu + 0.25M+45 + 0.25M-45. 

3.2 Eigenface Algorithm 

The eigenface approach to face recognition was de- 
veloped and reported in Turk and Pentland [7]. The 
basic approach of this technique is to develop a multi- 
dimensional feature space, based on a holistic analysis 
of the faces in the database, and then use the projec- 
tions of the test face onto the feature space axes for 
recognition. This work followed the development of a 
technique for efficiently storing face images as a collec- 
tion of weights, which represents the projections of the 
face onto the various directions of the feature space, 
Kirby and Sirovich [SI. The feature space is generated 
by determining the eigenvectors of the covariance ma- 
trix of the set of faces in the database (principle com- 
ponent analysis), so each face in the training set can be 
represented by a summation of the contribution of each 
eigenvector to that face. To recognize an unknown test 
face, the contribution of each eigenvector to the test 
face is calculated, and the resulting set of weights is 
then compared to the weights of each training set face. 

We implemented the algorithm as described in Turk 
and Pentland [7]. For each of the four recognition ex- 
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periments, we calculated a separate set of eigenvectors. 
We computed each set of eigenvectors for all 101 known 
images, and used the normalized and masked images. 
For recognition of visible images, each face was repre- 
sented by its projection onto the first 70 eigenvectors, 
and for IR, each face was represented by its projections 
on eigenvectors 5 through 100. 

3 3  Matching Pursuit Filters 

Train>Test 

IRSJ>IRTll 

IRT5>IRS 11 

VS5 > V T l l  

A matching pursuit filter is a self-organizing tech- 
nique for creating efficient and compact models from 
data. The design of a matching pursuit filter is based 
on an adapted wavelet expansion, where the expansion 
is adapted to both the data and the pattern recog- 
nition problem being addressed. This contrasts with 
most adaptation schemes, where the representation is 
a function of the data, but not of the problem to be 
solved. This approach does not decompose the im- 
ages in the training set individually; rather, it deter- 
mines the expansion by simultaneously decomposing all 
the images. By using two-dimensional wavelets as the 
building blocks for the decomposition, the representa- 
tion is explicitly two-dimensional and is composed of 
local information. Matching pursuit filters are applied 
to face recognition by encoding a small set of facial fea- 
tures. Because the features are restricted to the nose 
and eye regions of the face, the algorithm is robust to 
variations in facial expression, hair style and the sur- 
rounding environment. The algorithm uses coarse-to- 
fine processing to estimate the location of a small set 
of key facial features. Based on the hypothesized lo- 
cations of the facial features, the identification module 
searches the database for the identity of the unknown 
face. For further details see Phillips and Vardi [5] and 
Phillips [6]. 

Matching pursuit filters are designed from a training 
set of images; in this study, the training set consisted 
of images from a different data set than those used 
here. This avoids adapting the filters to a particular 
subset of images in the database (matching pursuit fil- 
ters are usually designed from a subset of images in 
the database). There are two sets of filters: one for 
the visible images and one for the IR images. In each 
set of filters, there is a filter for each feature. For the 
visible images the features used were the left and right 
eyes, tip and bridge of the nose, and the face and in the 
IR the features are the left and right eyes, and tip and 
bridge of the nose. A feature corresponds to a region 
of the face (i.e., the left eye is the region surround- 
ing the left eye and the face feature is the face after it 
has been cropped). Both the visible and IR filters were 
trained on images not used in the experiment. The visi- 

GS Proj. Eigen Face 

Top Tap2 Top Topz 
Match Matcher Match Matcher 

92 93 85 91 

94 95 85 91 

89 96 86 94 

ble filters are trained on images from the DARPA/ARL 
FERET database, which consist of images taken with a 
35" camera and then digitized [5, 61. The size of the 
training set was 58 images. We designed the IR filters 
from 30 IR images acquired with an earlier version of 
the SMRTII [6]. 

4 Experimental Results 

VT5 > VSll 

The recognition results that we obtained with the 
three algorithms described in the previous section are 
presented in the following table. We should emphasize 
that the algorithms we used were not optimized, and 
no conclusions about their relative performance should 
be drawn. Rather, the results are intended to show 
that, under the experimental conditions imposed, the 
relative performance of visible and IR imagery for face 
recognition is roughly consistent, with slight favoritism 
shown for one type of imagery over another, across al- 
gorithms. 

93 96 88 93 

Match hrs. 

Table 1. Number of correctly identified (top 
match) and correct within top 2 matches out 
of 101 subjects. Two visible and two IR ex- 
periments using three feature extraction and 
recognition algorithms. 

In a second set of experiments, we investigated the 
importance for recognition of the overall structure of 
the face, which was accomplished with two runs of 
the matching pursuit filter recognition algorithm. The 
matching pursuit filter results in table 1 use different 
sets of features for the visible and IR. In this experi- 
ment we ran the matching pursuit filter algorithm on 
both visible and IR using three sets of features. In the 
first run, all the features were used (the left and right 
eyes, the bridge and tip of the nose, and the face). In 
the second run the effect of removing the face feature 
was investigated (the features are the left and right 
eyes, and the bridge and tip of the nose). In the third 
run the reverse effect was studied (the only feature was 
the face). This experiment shows that the overall shape 
of the face contributes to recognition for the visible im- 
agery, whereas IR performance increases if the overall 
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shape of the face is not included (table 2). The third 
run demonstrates that performance based on overall 
shape of the face is better in visible than IR. 

5 features 
95 89 

Face only 40 54 87 

Table 2. Performance for the matching pursuit 
filter face recognition algorithm as the number 
of features is varied. The number reported is 
the number correctly identified (top match) 
out of 101 subjects. 

In addition to comparing visible and infra-red im- 
agery, it was interesting to compute the performance 
when both visible and infra-red information is fused. 
We computed a straightforward equal-weight combina- 
tion of the normalized distance metrics for the grey 
scale projection algorithm. The results are presented 
in 

5 

table 3. 

Table 3. Number of correct recognitions out 
of 101 for multi-sensor fusion of infra-red and 
visible distance metrics (using the grey scale 
projection technique). 

Discussion 

In this paper we compared recognition performance 
of visible versus IR imagery. We collected the images 
in a manner that allowed some variation in geometry 
and pose of the face, and illumination (as the subject 
walked through the image sequence space). Tempera- 
tures remained constant. To obtain a robust measure 
of performance, we ran the images through three face 
recognition algorithms. One of the algorithms performs 
better on IR images (GS), and two of the algorithms 
perform better on visible images (eigenface and match- 
ing pursuit filters). None of the algorithms showed per- 
formance significantly better for one modality than an- 
other. 

We did not address a number of important issues 
that will concern any real-world application in this 
study. The main issues that we have not addressed are: 
significant variations in illumination for visible images, 

and changes in temperature for IR images. The relative 
importance of each of these issues will depend on the 
face recognition scenario under scrutiny. For verifica- 
tion scenarios with cooperative subjects, illumination 
can be controlled, whereas variations in temperature 
cannot be controlled. 

The key to answering these questions is to measure 
the effects of temperature versus illumination varia- 
tions. Thermal changes can be due both to physio- 
logical (running versus resting) or environmental vari- 
ations. To measure these effects will require the collec- 
tion of a large IR database. For visible images, there 
is a marked decrease in performance when images are 
taken at  different times. In the phase-two FERET test 
the average performance of the three algorithms tested 
is 92 percent when the gallery and probe images of each 
person were collected within 5 minutes. (The gallery is 
the set of people (images) of known identity, and the 
task is to identify the person in the probe image.) Per- 
formance decreases to 57 percent when the gallery and 
probe images are collected on different days [2]. 

One potential limitation of IR imagery is that IR is 
opaque to glass (figure 3), which makes it very simple 
for a person to block out a large portion of their face 
(for example by wearing eyeglasses). This is a serious 
consideration if most of the information for identifica- 
tion is in the eye and nose region. (Visible imagery can 
suffer from highlights on the glasses under certain il- 
lumination conditions (figure 3), but the problems are 
considerably less severe than with IR). Another limi- 
tation is the considerably greater cost of an IR sensor, 
compared with a visible sensor. Because of their rela- 
tive costs, any system with an IR sensor would prob- 
ably include a visible camera. Thus, a future line of 
research is to develop face recognition and detection 
algorithms that fuse information from the two sensors. 

There are two key areas in automatic processing of 
faces: face recognition and detection. In this paper, 
we have reported on the first area. We have begun our 
comparison of visible and IR imagery for face detec- 
tion. To pursue face detection, we have collected both 
indoor and outdoor scenes that contain faces (see fig- 
ure 4 for example). For each scene, we have collected a 
visible and an IR image. Our preliminary experiment, 
using a grey scale projection-based face finder, showed 
approximately equivalent performance for face finding 
in visible and IR imagery (as indicated by the effect 
of threshold sensitivity on the ROC curve). This algo- 
rithm is illustrated in figures 4(a) and 4(b). Differences 
in performance between visible and IR may become evi- 
dent when a more detailed analysis is carried out, using 
several detection algorithms. 
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(a) Visible (b) Infra-red 

Figure 3. Images with glasses 
(a) Visible, indoor 
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